Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 16(1)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724656

RESUMO

The development of clinical breath-analysis is confounded by the variability of background volatile organic compounds (VOCs). Reliable interpretation of clinical breath-analysis at individual, and cohort levels requires characterisation of clinical-VOC levels and exposures. Active-sampling with thermal-desorption/gas chromatography-mass spectrometry recorded and evaluated VOC concentrations in 245 samples of indoor air from three sites in a large National Health Service (NHS) provider trust in the UK over 27 months. Data deconvolution, alignment and clustering isolated 7344 features attributable to VOC and described the variability (composition and concentration) of respirable clinical VOC. 328 VOC were observed in more than 5% of the samples and 68 VOC appeared in more than 30% of samples. Common VOC were associated with exogenous and endogenous sources and 17 VOC were identified as seasonal differentiators. The presence of metabolites from the anaesthetic sevoflurane, and putative-disease biomarkers in room air, indicated that exhaled VOC were a source of background-pollution in clinical breath-testing activity. With the exception of solvents, and waxes associated with personal protective equipment (PPE), exhaled VOC concentrations above 3µg m-3are unlikely to arise from room air contamination, and in the absence of extensive survey-data, this level could be applied as a threshold for inclusion in studies, removing a potential environmental confounding-factor in developing breath-based diagnostics.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Testes Respiratórios , Monitoramento Ambiental/métodos , Expiração , Humanos , Medicina Estatal , Compostos Orgânicos Voláteis/análise
2.
J Breath Res ; 14(4): 046008, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32604084

RESUMO

Sampling of volatile organic compounds (VOCs) has shown promise for detection of a range of diseases but results have proved hard to replicate due to a lack of standardization. In this work we introduce the 'Peppermint Initiative'. The initiative seeks to disseminate a standardized experiment that allows comparison of breath sampling and data analysis methods. Further, it seeks to share a set of benchmark values for the measurement of VOCs in breath. Pilot data are presented to illustrate the standardized approach to the interpretation of results obtained from the Peppermint experiment. This pilot study was conducted to determine the washout profile of peppermint compounds in breath, identify appropriate sampling time points, and formalise the data analysis. Five and ten participants were recruited to undertake a standardized intervention by ingesting a peppermint oil capsule that engenders a predictable and controlled change in the VOC profile in exhaled breath. After collecting a pre-ingestion breath sample, five further samples are taken at 2, 4, 6, 8, and 10 h after ingestion. Samples were analysed using ion mobility spectrometry coupled to multi-capillary column and thermal desorption gas chromatography mass spectrometry. A regression analysis of the washout data was used to determine sampling times for the final peppermint protocol, and the time for the compound measurement to return to baseline levels was selected as a benchmark value. A measure of the quality of the data generated from a given technique is proposed by comparing data fidelity. This study protocol has been used for all subsequent measurements by the Peppermint Consortium (16 partners from seven countries). So far 1200 breath samples from 200 participants using a range of sampling and analytical techniques have been collected. The data from the consortium will be disseminated in subsequent technical notes focussing on results from individual platforms.


Assuntos
Testes Respiratórios/métodos , Mentha piperita/química , Compostos Orgânicos Voláteis/química , Benchmarking , Feminino , Humanos , Masculino
3.
Bioanalysis ; 8(13): 1325-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27277875

RESUMO

AIM: Breath analyses have potential to detect early signs of disease onset. Ambient ionization allows direct combination of breath gases with MS for fast, on-line analysis. Portable MS systems would facilitate field/clinic-based breath analyses. Results & methodology: Volunteers ingested peppermint oil capsules and exhaled volatile compounds were monitored over 10 h using a compact mass spectrometer. A rise and fall in exhaled menthone was observed, peaking at 60-120 min. Real-time analysis showed a gradual rise in exhaled menthone postingestion. Sensitivity was comparable to established methods, with detection in the parts per trillion range. CONCLUSION: Breath volatiles were readily analyzed on a portable mass spectrometer through a simple inlet modification. Induced changes in exhaled profiles were detectable with high sensitivity and measurable in real-time.


Assuntos
Testes Respiratórios/instrumentação , Espectrometria de Massas/instrumentação , Mentol/análise , Óleos de Plantas/análise , Compostos Orgânicos Voláteis/análise , Adulto , Pressão Atmosférica , Desenho de Equipamento , Expiração , Feminino , Humanos , Masculino , Mentha piperita , Mentol/metabolismo , Pessoa de Meia-Idade , Óleos de Plantas/administração & dosagem , Óleos de Plantas/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito , Respiração , Compostos Orgânicos Voláteis/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...